Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting ourden for this cotlectton ot infarmation s sstimated 10 average ! hour per response, including the ume for reviewing instr ing ing data sources,
gathering and maintaining the data needed. and comoieting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
<ollection of information, including suggestions tor reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and t0 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 0C 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
31 May 1995 Summary 01 Jun 94 - 31 May 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Fugda@ental Studies of Radial Wave Thermoacous?lc PT 61153N
ngines . G N0001493 J 1131

TA 3126975ess

6. AUTHOR(S)
W. Patrick Arnott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Atmospheric Sciences Center
Desert Research Institute
P.0. Box 60220

Reno, NV 89506-0220

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
ONR 331

800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

12b. DISTRIBUTION CODE

12a. OISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release:
Distribution unlimited

{13. ABSTRACT (Maximum 200 woras)

Our research is about arbitrary geometry thermoacoustic engines. The specific
geometry studied in detail is the radial wave arrangement. Formal theory and the short
stack approximation were derived for this geometry and were used to pursue an answer to
the following question: Radial or plane wave thermoacoustic refrigerators? To date, the
plane wave refrigerator appears to be the best overall compromise refrigerator, though the
radial wave refrigerator has a higher cooling capacity. An evolving numerical design
program has been enhanced to include radial or plane wave engines with variable plate
spacing and both plane and radial wave resonators simultaneously with application to
driving radial wave refrigerators with heat driven plane wave sound sources. Our
experiments have mainly been aimed at radial wave prime movers for the purposes of
validating the theory and investigating the large amplitude behavior. Heat exchanger design
is a critical issue.

DTI® QUALITY INEPECTED 8

14. SUBJECT TERMS 15. N%?BER OF PAGES

Thermoacoustic, refrigeration, Heat-Driven Sound Source,

Radial Geometry 16. PRICE CODE

17, SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION ]19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
\NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescnibed by ANSI Std. 239-18

298-102




Progress Report for

FUNDAMENTAL STUDIES OF RADIAL WAVE THERMOACOUSTIC ENGINES

19950808 011

by
W. Patrick Arnott
Atmospheric Sciences Center
Desert Research Institute
PO Box 60220
Reno NV 89506

for
Dr. Logan E. Hargrove
and
The Navy Environmentally Safe Ships Program

ABSTRACT

Our research is about arbitrary geometry thermoacoustic engines. The specific
geometry studied in detail is the radial wave arrangement. Formal theory and the short
stack approximation were derived for this geometry and were used to pursue an answer
to the following question: Radial or plane wave thermoacoustic refrigerators? To date,
the plane wave refrigerator appears to be the best overall compromise refrigerator,
though the radial wave refrigerator has a higher cooling capacity. |

An evolving numerical design program has been enhanced to inblude radial or
plane wave engines with variable plate spacing and both plane and radial wave
resonators simultaneously with application to driving radial wave refrigerators with heat
driven plane wave sound sources.

Our experiments have mainly been aimed at radial wave prime movers for the
purposes of validating the theory and investigating the large amplitude behavior. Heat

exchanger design is a critical issue.
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1. Project Description The goal of our research (in close collaboration with Richard
Raspet and students from the Univ. MS) is to determine the merits of alternative
geometry thermoacoustic refrigerators. A brief review of standard plane wave
thermoacoustic refrigerators will set the stage for the discussion of alternative geometry
refrigerators. The intuitive aspects of thermoacoustic refrigeration have been developed
as a result of the short stack approximation for thermoacoustics.12 Figure 1 shows
schematically a typical plane wave refrigerator. The sound source stimulates heat flow
up the temperature gradient formed across the stack plates. The plates are spaced by
a few thermal boundary layers, &, though since &« depends on temperature, the plate
spacing is not optimal at all point along the stack. The distribution of kinetic, potential,
and thermoacoustic power is also shown in Fig. 1 for standing waves. At first glance it
appears that the stack should be placed at a peak for thermoacoustic power to
maximize refrigeration. However, when efficiency (or more properly, Coefficient of
Performance, COP) is important, some thermoacoustic power can be sacrificed to save
on kinetic energy dissipation due to gas viscosity and friction from the relative motion of
the stack and gas.

Suppose that the resonator in Figure 1 could be contorted into any shape,
perhaps an exponential or conical horn shape, and suppose that the plate spacing could
be made arbitrary at any position along the resonator. An example of such a resonator
is shown in Fig. 2. Does a resonator and stack geometry exist that will greatly improve
upon the performance of plane wave refrigerators? What properties of alternative
geometry thermoacoustic engines change on account of the contortion? The
distributions of potential and kinetic energy dissipation, and of thermoacoustic power
generation, are altered by geometry, as is the relation between optimal thermal
boundary layer thickness and stack plate spacing. Formal analysis for arbitrary
geometry thermoacoustics is performed using our previous theory3 with a new

differential equation for specific acoustic impedance for the stack.4

-1-




~ 1._Why study alternative geometry acoustic refrigerators?

Plane Wave Thermoacoustics

(standard)
| A2 ]
Heat —
Flow =—=
=T,
Optimal Spacing = 2.5 Ok
but ...
(Ox is the distance heat can travel S« depends on T
. ilati
during one sound source oscillation) (Sx o« T0.83¢ He)
Kinetic Energy Dissipation
Thermoacoustic —
Power for cooling N

Energy
Dissipation

Figure 1. Standard geometry acoustic refrigerator.




Generic Geometry

Thermoacoustics Sound

Source

1. Variable plate spacing ...

a. can ensure optimal Ox is achieved.
b. can reduces losses due to Kinetic Energy dissipation.

2. Variable resonator cross sectional area can shift
the locations of ...
a. Maximum thermoacoustic power generation
b. Maximum kinetic energy dissipation (viscous losses).

3. Nonlinear generation of higher harmonics is not resonance
enhanced (Helps to get most sound source power into the
resonator mode that causes cooling).

Figure 2. Generic geometry thermoacoustic refrigerator.

The Hofler low-loss resonator design, and the use of a bulb at the quarter
wavelength location of a resonator to give a low impedance are examples of resonators
that deviate from the strictly plane form. Bennett5 studied variable plate spacing
refrigeration, though her formulation was somewhat incomplete.# She found
improvement of the refrigerator COP when the stack plates are flared wider at the hot
end.

The specific geometry we have considered in detail is the radial wave geometry?
shown in Fig. 3. Note that there are two possible stack locations in this geometry. We
developed a specific theoretical methodology for this geometry,2 though we later found
it was a special case of the arbitrary geometry method.4 Jay Lightfoot, a student at the

University of Mississippi, is currently working on a radial wave prime mover.
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Figure 3. Radial wave geometry thermoacoustic engine.

2. Approach taken.

Our approach has been to investigate in detail a specific example, the radial

wave geometry, as a non plane wave thermoacoustic engine.2 We have developed a

numerical design code for prime movers, and are finishing the code modifications for

refrigerators and heat driven prime movers that generate the sound for acoustic
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refrigerators. The code will allow for mixed mode geometries (i.e. radial and plane wave
resonators) in the same system. We are currently seeking experimental validation 6f
our code and theory through the development and testing of a radial wave prime mover.

Only recently we realized that a more general formulation for arbitrary engines
was possible, and that this general form contained the radial wave problem as a special
case. The numerical implementation of this theory is currently underway (prime movers
in MS, refrigerators and prime movers together at DRI).

3. Specific work accomplished, June 1994 - May 1995.
3a. Theory.

We have completed a thorough theoretical analysis for radial wave
thermoacoustic engines, and have used the short stack approximation of
thermoacoustic to compare the theoretical promise of such engines.2 Our short stack
analysis assumes nominally standing waves in the resonator. | will distill the most
pertinent results from our analysis (the formal publication should be available soon: the
preprint is included as Appendix 1).

Thermoacousticians early on found that acoustic refrigerators could develop a
large cooling capacity, though at the expense of efficiency or Coefficient of Performance

(COP). Thus we developed a Coefficient of Compromise, Cn, as follows:

Cm = (Gops ) 1Ge@! . m20) . (1)

where COPc is the highest possible, or Camot Coefficient of Performance, ! and |62(¢)|
is the cooling capacity of the refrigerator. For example, when m=1, cooling capacity and
COP are equally emphasized, when m<1, cooling capacity is emphasized more than
COP, and when m>1, COP is emphasized more than cooling capacity.

Figure 4 shows cooling capacity and COP as a function of the emphasis power,
rh, in Eq. (1), for 'equivalent' radial and plane wave acoustic refrigerators and for an

efficient gas mixture with low Prandtl number. Each refrigerator was optimized with
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Figure 4. Compromise for plane and radial wave thermoacoustic refrigerators. Radial

inner is given by the squares, radial outer by the triangles, and plane by circles. Open

symbols are COP/COPc, and solid symbols are cooling capacity.

respect to maximizing Cr, by adjusting the stack plate spacing, location in the standing
wave, and stack length. Details can be found in Appendix 1. At low m, cooling capacity
is emphasized over COP, and radial wave inner refrigerators have the highest cooling
capacity and lowest COP/COPc. The COP/COPc ratio is very similar for plane and
radial outer refrigerators, though the plane case has a greater cooling capacity. At large
m, where COP/COPc is emphasized, plane wave refrigerators have highest cooling
capacity and COP/COPc. For cooling capacity alone, the radial inner refrigerator is
probably the choice to make, though plane wave acoustic refrigerators are generally

best overall compromise refrigerators. | emphasize that the results reported in Fig. 4




were performed using the short stack approximation of thermoacoustics; the same
analysis should be performed, at least in part, using the full theory and numerical
implementation thereof.

3b. Experiment

Jay Lightfoot, a Ph.D. student at the University of Mississippi, is currently working
on a radial wave prime mover. The purposes of this experiment are to validate the
numerical model, and to investigate the structure of harmonics that develop at high
amplitude. Since resonator modes are not even close to being the same frequency as
most harmonics, it is expected that this geometry will result in more energy in the
fundamental than equivalent plane wave resonators. Our contribution to this work is in
design and construction of heat exchangers. Figure 5 shows one of the heat
exchangers manufactured at DRI.

Jay is using silicon bonded mica paper stack material which has a thermal
conductivity of 0.17 W/(m K) at room temperature, compared to 0.2 W/(m K) for Kapton,
another material frequently used in stack construction. Low thermal conductivity stack
material is desirable since it minimizes the normal heat flow down the temperature
gradient. Mica paper is frequently used in toasters, and is much stiffer than Kapton for
equivalent thicknesses. We are also using the mica paper in our prime movers for the
thermoacoustic enhanced photoacoustic spectrometer at DRI.

Heat transfer and heat exchangers in thermoacoustics play an extremely
important rolé in the overall success of a practical device. Any number of books have
been written on heat transfer, for example Ref. 6 from which the following discussion is
derived. The discussion is certainly not a presentation of research results on theoretical
heat transfer, it is just an application of established theory to the design of heat

exchangers for thermoacoustics.




Figure 5. Heat exchanger for the radial wave prime mover.
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Figure 6. Heat exchanger schematic.

Figure 6 shows a heat exchanger schematic as it might be implemented in
thermoacoustics. The base is at temperature Tp, and is a lower temperature than T..,
the fluid temperature in the bulk of the fluid, so that heat may be removed from the fluid
to the base. The length L can be considered the midway point between a base on the
left and a similar base or fluid carrying tube (not shown) on the right. Fluid flows in the
direction of the arrows, and the convective heat transfer coefficient is h. Ref. 6 quotes h
to vary from 2-250 Watts/(m2 K) for free and forced convection of gases, though due to
the uncertainty of this factor, we will try to glean something about heat transfer without

having to explicitly use h. Heat flux due to convection is parameterized as

q"'=(Te-Tp)h ) )
where q" is in units W/m2,
In thermoacoustics, heat exchangers are usually pressed against the stack on

one side and are open to the resonator on the other. Heat is transfered to the stack
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from the heat exchanger by a number of processes. Heat is directly transfered by
conduction from the stack solid material, through the stack and heat exchanger interface
where contact resistance is an issue, and finally to the heat exchanger. Any convection
of the gas in the stack also leads to heat transfer. Heat is also transfered by
thermoacoustic action,! where we envision a parcel of gas at the heat exchanger and
stack boundary making excursions both into the heat exchanger and a half cycle later
into the stack. The gas is thought to transfer heat at the moment of greatest excursion
when it is temporarily motionless. We might consider a strong acoustic wave with
attendant high particle velocity as a source of convection as well when the gas is
gushing through the heat exchanger on its way to its turn around point. Heat is also
transferred between heat exchangers by black body radiation.

When used as a cold side heat exchanger for a refrigerator, the basic problem is
that heat must be delivered from the heat exchanger at base temperature Ty, to the gas
at a lower temperature T... Though the fins are shown terminating in Fig. 6, the
termination should be viewed as the mid point between the base on the left and a base
on the right. Gas will be considered to flow in a steady stream through the heat
exchanger, and by Eq. (2), the heat transferred by convection will be locally dependent
on the fin temperature. The ideal situation would be for the entire fin to be at the base
temperature, for convection would then occur between temperatures Tp and Te.. In this

ideal case, the heat flow would

dmax = (Te - Tp) h Af , 3)
where A is the surface area of the fin. Making allowance for a temperature gradient
along the fin, and assuming the fin tips are adiabatic, a fin efficiency for convection may

be defined Nt = qt/qmax Where gy is the actual heat transferred by convection, and from

analysis, 6




mL¢ = ’\’ ﬁ; (L+t/2)32 , (5)

k is the fin thermal conductivity, L and t are given in Fig. 6, and h is the (unknown)

convective coefficient. The leading correction for ns is

m=(1-4 ) , ©
valid when mL¢<<1, or equivalently, L << Vkth . Note that higher thermal conductivity
and plate thickness t allow for longer heat exchanger sections between fluid filled tubes.

Equations (4) and (5) indicate that for high fin efficiency mL¢ should be

minimized, or put more bluntly, mL¢ should be sent to 0. Eq. (5) indicates that to do this,
the fin material should have as large a thermal conductivity as possible (no suprise
there), that the fin length should be minimized (no suprise there either, since one can
minimize a temperature for fixed temperature by shortening the span). It is somewhat
suprising that Eq. (5) doesn't roll smoothly into a no fin solution when L—0, though there
are some assumptions built into Eq. (5) that may obviate this limit. The greater the
convective coefficient, the lesser the fin efficiency, since mL¢ depends on the convective
parameter h as the square root. THis dependence on h is not anomalous, since with a
higher convective parameter, more heat needs to be transferred. Finally, in the limit that
L >> t, a usual limit in thermoacoustics, mL¢ =< 1/\/t_ ; hence it appears that a thicker fin is
better than a thinner fin.

The actual heat transferred is given by

gt = nf h 2w(L+t/2) (Tp - T) . (7)
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A commonly held view in thermoacoustics is that the plate width, w, should be about the
same as the acoustic displacement amplitude. For an array of cooling fins, the overall
fin efficiency is given by®

no=1-3ryares (1-m) . ®
For a fin array with plate spacing s << L (the usual case in thermoacoustics), the
approximation ng =1 is good. Thus we can concern ourselves most with making ny
large for thermoacoustic considerations.

| have two problems with the foregoing convective theory. First, the coefficient h

is not well known for our geometries. lts value probably lies between forced and free
convection for gases. Second, all of the details of the temperature distribution between
the plates has been swept into coefficient h. Another way of analyzing heat transfer in
thermoacoustics is to compute the enthalpy flow at the left and right ends of a heat
exchanger. By power conservation, any difference in these enthalpy values is to be
attributed to power entering or exiting the heat exchanger as heat. Also, heat
transferring by conduction from the stack, through the contact resistance, to the heat
exchanger, contributes to the heat load at the exchanger. Is an appreciable amount of
heat transferred by a classical steady breeze convective mechanism in

thermoacoustics?
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4. Publications.

a. W.P.Amott, J. A. Lightfoot, R. Raspet, and H. Moosmililler, "Radial wave
thermoacoustic engines: Theory and examples for refrigerators, prime movers,
and high-gain narrow-bandwidth photoacoustic spectrometers," accepted for
publication in J. Acoust. Soc. Am.

b. W.P. Amott, H. Moosmiiller, R. E. Abbott, and M. D. Ossosfsky, "Thermoacoustic
enhancement of photoacoustic spectroscopy: Theory and measurements of the
signal to noise ratio," submitted to Review of Scientific Instruments. (Numerical
analysis developed within the ESSP program was used to aid in design of the
thermoacoustic part of this research.)

c. J.A. Lightfoot, R. Raspet, H. E. Bass, and W. P. Arott, "Thermoacoustic engines
with varying plate separation,” in preparation for J. Acoust. Soc. Am.

5. Other people associated with the project.

Two undergraduate Physics students from the University of Nevada are partially
supported by this contract. They are seniors, and one of them (Michael Ossosfsky) has
had extensive previous experience in the machine shop. The other student (Robert E.
Abbott) is skilled at intricate parts manufacture. Together they work on a number of
problems, such as constructing heat exchangers for the radial wave prime mover, and
they also work on the thermoacoustic enhanced photoacoustic spectrometer project.

| am collaborating directly with the Ph.D. student Jay Lightfoot at the University of
Mississippi. | visited the UM briefly during the contract period. Jay and | are modifying
my thermoacoustic design numerical analysis program to evaluate general geometry

engines. The Mississippi effort is directed by Dr. Richard Raspet.
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Radial wave thermoacoustic engines: Theory and examples for refrigerators,
prime movers, and high-gain narrow-bandwidth photoacoustic spectrometers
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University of Mississippi

University, MS 38677
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ABSTRACT

A theoretical analysis of radial thermoacoustic engines in cylindrical resonators is
developed. Impedance and pressure translation equations are presented for open sections of the
resonator and for heat exchangers. Coupled first order differential equations are given for
pressure and impedance in the temperature gradient supporting engine section (stack). These
quantities are used to calculate heat and work flows and to predict engine performance. Theory
and design of a variable quality factor resonator for enhanced photoacoustic spectroscopy are
presented. The short stack approximation is developed for the radial geometry and is used along
with plane wave equations to compare refrigerator and prime mover performance for these two
geometries. Results of the comparison are that engines in the plane wave geometry are better
overall refrigerators when maximizing the coefficient of performance and cooling capacity
together. Radial wave refrigerators are perhaps a better choice when cooling capacity is more
important than coefficient of performance. The radial wave geometry yields prime movers with
lower temperature gradients and higher efficiency for a glven acoustic power load.

a) W. Patrick Arnott is an Adjunct Assistant Professor in the Department of Physics, University of Mississippi.
PACS #s 43.35.U, 43.28.F
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1. LIST OF SYMBOLS
Cross sectional resonator area
resonator radius

coefficient of compromise
coefficient of performance

Camnot coefficient of performance
sound speed

isobaric heat capacity per unit mass
thermoacoustic element length
thermoviscous dissipation function
resonance frequency

radial wave prime mover root function
Hankel function of order n and type k
resonator axial length

imaginary part of

Bessel function of order n

complex propagation constant
adiabatic acoustics propagation constant
exponent for COP/COPc preference
Prandt! number

ambient pressure

acoustic pressure

quality factor of resonance

heat flow

twice pore or resonator Cross sectional area
divided by pore perimeter

radial coordinate

inner and outer radial stack radii. rp = r,+d
radial stack ambient temperatures at ra, I
ambient temperature

acoustic i.e. excess temperature

radial wave stack temperature gradient
short stack radial wave temperature gradient
plane wave stack temperature gradient

ambient volume of gas in the stack

Arnott, Lightfoot, Raspet, Moosmiiller, JASA

Tmif

standing wave particle velocity

work flow
work flow external to the stack

dimensionless work flow external to the stack
specific acoustic impedance

boundary layer specific acoustic impedance
intrinsic impedance

axial coordinate

function used in stack impedance equation
coefficient of thermal expansion

ratio, isobaric to isochoric specific heats
Swift's normalized temperature gradient
Photoacoustic spectrometer bandwidth
thermal penetration depth

dummy variable

Swift's plate heat capacity ratio

normalized stack location

dynamic viscosity

radial and plane wave efficiencies, respectively

thermal conductivity
shear wave number = ‘5 R/

Thermal disturbance number = V2R dx
ambient gas density

acoustic gas density

normalized stack temperature gradient
refrigerator-stack normalized maximum
temperature gradient

prime mover stack normalized minimum
temperature gradient

Stack or heat exchanger porosity

radian frequency

standing wave particle displacement
stack or heat exchanger thickness

complex conjugation operator
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I. INTRODUCTION

Thermoacoustic heat engines involve heat transfer between a solid and a fluid undergoing
compression, expansion, and displacement. A comprehensive review is available! as is a review
of the foundation work for modern thermoacoustics.2 Most previous work considered placing
thermoacoustic engines in plane wave resonators. A framework for analyzing and predicting the
performance of engines in radial wave resonators is given in this paper.

Swift! briefly considered thermoacoustic engines in cylindrical resonators with only the
lowest radial mode active. He developed the wave equation, discussed how to calculate energy
flux, and showed a possible conceptual arrangement for a working engine. We advance upon
Swift's work by establishing pressure and impedance translation equations for all points within
the resonator. These equations are useful for computing acoustical quantities in open sections of
the resonator, in heat exchangers, and in the temperature-gradient-supporting sections known as
thermoacoustic engines. These relations naturally connect the various sections and give an
explicit prescription for computing properties of complicated resonators containing several
engines. This development parallels the previous analysis of engines in plane wave resonators.>

A conceptual design of a radial wave thermoacoustic engine is shown in Fig. 1. A
cylindrical resonator is filled with a gas such as helium. The nominal pressure distribution is a
radial or breathing mode. Thermoacoustic engines may be placed at either or both locations
shown in Fig. 1 and are made of material with low thermal conductivity to support a temperature
gradient. Since some of the first thermoacoustic engines were produced by stacking parallel
plates, thermoacoustic engines are also referred to as stacks. The thermoacoustic elements are
between pressure nodes and antinodes so that the product of acoustic pressure and particle
velocity is significant. It is this product that is important for thermoacoustic transport of heat up
the temperature gradient in the refrigerator application, or, in the sound source application, for
producing net acoustic power when the applied temperature gradient is sufficiently large.!-4
Heat exchangers made of material with high thermal conductivity are on both sides of the engine
and are used to transfer heat between outside sources and sinks. Heat exchangers nearest the
pressure antinodes are at higher temperatures than heat exchangers facing the pressure node. A
full system would have many of the annuli shown in Fig. 1. The annuli would be stacked
perpendicular to the plane of the figure with spacing between adjacent annuli of about one to two
thermal penetration depths in the gas. The system can be operated as a sound source when high
temperature gradients are applied across the engines, as a refrigerator when driven by an external
acoustic source, or as a combination of both, just as with plane wave engines. !

Particle velocity and pressure distributions in empty resonators are of course different for
radial and plane wave modes. For gas parcels in a standing wave, displacement and acoustic
pressure are in phase which gives rise to a temperature gradient through the relation of pressure
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and temperature. The temperature increase during compression of a gas parcel undergoing
displacement in a standing wave is followed by a temperature decrease during expansion half a
cycle later when the gas parcel is displaced in the opposite direction. This standing wave
temperature gradient is useful to compare with temperature gradients applied to or developed on
the stack.! For example in the inviscid limit where the Prandtl number Np =0, the stack will
operate as a refrigerator when its temperature gradient is less than the standing wave gradient and
as a prime mover when its temperature gradient is larger than the standing wave gradient. The
temperature gradient associated with standing waves in empty plane and radial resonators are
considered to gain familiarity with some differences between plane and radial wave geometries .
Swift! refers to this as the critical mean-temperature gradient, VTcre. The coordinate system and
possible stack locations for radial and plane engines are shown schematically in Figs. 2a and 2b.

The critical temperature gradients are

hB Tozc _ cos (nz/h) aP Tore _ Jo (3.832r/a)
—1 " " sin(nah) S R/ er) (125

where Tgzc and Tor,c are the critical mean-temperature gradients associated with plane and radial

waves, respectively.
Figure 3 shows the critical temperature gradients. In the inviscid approximation, engines

act as refrigerators when the ambient temperature gradient on the stack is in the region between
the curves and zero temperature gradient line; otherwise, engines are prime movers (sound
sources). The curves cross this line at pressure nodes. The pressure node for the radial case
occurs at r/a=0.63. Some qualitative conclusions are that radial refrigerators with stacks between
0 < r/a < 0.63 can achieve larger temperature gradients than plane wave refrigerators, and that
radial prime movers with stacks between 0.63 <r/a<1 will operate at lower temperature
gradients than either plane wave prime movers or the other radial prime mover. The latter of
these conclusions is not true when gas viscosity is included as will be shown below.

This paper is organized as follows. Section II and its subsections contain the formal
solution for the first order acoustic properties of pressure, specific acoustic impedance, and the
second order enthalpy flow. Section IIC is an application of the general theory which serves the
dual purpose of teaching the calculation techniques andsof demonstrating an interesting
dependence of resonance frequency on stack plate spacing. The application has relevance to
design of thermoacoustically enhanced photoacoustic spectrometers.> The short stack
approximation similar to that given for plane waves3 (not limited by the additional boundary
layer approximation!) is presented in Sec. III, and is used in its subsections to compare the
performance of plane and radial wave refrigerators and prime movers.
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II. RADIAL WAVE ANALYSIS

A system of equations is established for computing pressure, specific acoustic impedance,
and enthalpy flow at all points. Enthalpy flow can be evaluated when pressure and impedance
are known, and is needed for estimation of the engine efficiency and power. The analysis closely
parallels that given for plane wave systems3 and for that reason the treatment here is brief.

Figures 2a and 2b show the coordinate system. Analysis proceeds by breaking the engine
up into the three types of regions, shown schematically in Fig. 1, for the purpose of isolating
elements that can be evaluated by the same type of equations and that have similar acoustic
properties. Region 1 contains the resonator center where, by symmetry, a pressure antinode and
particle velocity node exist. Region 2 is the thermoacoustic engine and will also interchangeably
be referred to as the stack in this paper. The stack usually has a radial temperature gradient.
Region 3 is associated with resonator and heat exchanger sections. Specific acoustic impedance
and pressure translation theorems are derived for analyzing wave propagation in region 3
thermoacoustic elements. These equations are analogous to Rayleigh's impedance translation
theorem for plane waves.3.6 Analyses for electromagnetic waves in radially symmetric layered
media,’ and of radial acoustic waves in ducts with finite impedance walls,8 have features similar
to the approach taken here in the analysis of regions 1 and 3.

The basic set of equations used by Rott? for analyzing plane wave engines can be altered
for use in analyzing radial wave engines.! The exp(-iot) convention is used. All components of
particle velocity and the excess temperature, T, are taken to be zero at the fluid-solid boundary.
The excess temperature boundary condition is appropriate when the product of stack density,
heat capacity per unit mass, and thermal conductivity is much greater than the same product for
the working fluid, and when the stack plate thickness is much greater than the thermal
penetration depth in the solid material of the stack.! Both criteria for using the zero excess
temperature boundary condition are usually satisfied in practice when the working fluid is a gas
at moderate pressure. This boundary condition is the £s—0 limit of the equations in Ref. 1.

A. Specific acoustic impedance and pressure translation theorems, and enthalpy flow.

Counterpropagating radial waves having different complex amplitudes may be
superimposed to describe wave propagation in open resonator and heat exchanger sections.
Boundary conditions at interfaces are continuity of acoustic pressure and continuity of specific
acoustic impedance. However, in the stack sections where the ambient temperature depends on
position, coupled first order differential equations are used to determine acoustic pressure,
specific acoustic impedance, and in some instances the ambient temperature.

Denote by Z(r) the specific acoustic impedance at position r. Z(r) is the acoustic pressure
divided by the volume of gas passing through r per unit area per unit time. The intrinsic or
characteristic impedance of a section of resonator, heat exchanger, or stack is given by

-5-
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QFMk :
where Q = R/( + R) is the porosity, R is the plate spacing, and { is plate thickness. The

int

thermoviscous dissipation function for the parallel plate geometry is!:3.9

2 eV-i
Fe)=1 - — 1 h( ) .
: eva 2 )

The dummy variable e=A1 when thermal dissipation is considered, and €=A for viscous

dissipation. Other parameters are the Prandtl number Npr = 1cp/X, the dimensionless shear wave
number A = (pg @/n)!1/2 R and thermal disturbance number A = A Ny !/2. The quantity R when
computing Eq. (3) is the spacing between heat exchanger annuli, or the distance between the top
and bottom plates (h in Fig. 2a) for open sections of the resonator. The complex propagation
number k is given by

22 @ 1= (= DFG) |

T c? F(\) ’ 4)

where c is the adiabatic sound speed.

Determined first are the acoustic pressure and specific acoustic impedance in the
resonator and heat exchanger sections shown as region 3 in Fig. 1. These quantities at position r-
d can be determined through use of pressure and impedance translation equations which use
given values of these quantities at position r. Using a procedure similar to that outlined in Ref. 3,

the translation equation for pressure is

Py(e-d) = Py() 2 { Hy(D[ke] Ho@[k(r-d)] - Hi@ k] HoD[k(r-d)]

- i%% (Ho®(kr] HoV[k(r-d)] - Ho(D[kr] Ho@k(-d)) } - (3)

The translation equation for specific acoustic impedance is
Z(6-d) = Zine { Z(6) (H1D[ke] Ho®[k(x-d)] - Hy@{ke] HoV[k(r-d))
i Zin (Ho®fkr] HoO{k(r-0)] - HoDfks] Ho®ece-a1) } /
{ Zine (H1O[-00) Ho@ (k] - HiOk(r-0)] Holir)
y
i 2(0) (HiOlk(e-0)] Hi@r] - H OG- HO) | (6)

Hankel functions HyG)[x] of order m, type j, and argument x are used in Egs. (5) and (6). Itcan
be shown using the asymptotic expansion for Hankel functions with x >> 1,
Ho(D(x) = (2/nx) 12 exp [i (x - /2 - 7/4)] and Hy@(x) = (2Umx)2 exp [-i (x - n/2 - W4)],

that Eqgs. (5) and (6) reduce to the one dimensional plane wave forms given in Ref. 3.
Specific acoustic impedance and acoustic pressure are determined in the stack, region 2 in

Fig. 1, as follows:
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dz . 2

G = KO Zin) ! ‘zif:()r)z) (2 a(mfl) =0 v
and

PLO = k) Zint) S ®

where o(r) is given by
B Tor F(AAD)/FR) - 1
1 - Npr
The temperature gradient along the plate in the radial direction is given by Tor = dTo(r)/dr. All
parameters such as o and k are dependent on r since the ambient temperature generally depends

9

onr in the stack. Except for the term involving l/r in Eq. (7), Eqs. (7-8) are the same as their
plane wave counterparts given in Ref. 3.

The expressions for heat, work, and enthalpy flows for the radial wave geometry are the
same as the plane wave geometry equations.! Expressions for heat, and work flows are given in
terms of acoustic pressure and specific acoustic impedance in Ref. 3. For the radial wave
geometry, it is important to note the dependence of enthalpy flow on the cross sectional area of
the resonator as Aes(r) = 21trh. By contrast, the plane wave geometry has Ares = raZ,

B. Numerical implementation of the theory.

Recent theoretical and experimental work has considered the effect of stack temperature
gradient on the resonator quality factor Q, and resonance frequency fg.4:10-13 The quantity 1/Q
is the dissipated acoustic power per radian frequency per stored acoustic energy throughout the
entire resonator. Although acoustic power is normally absorbed through the processes of heat
conduction and viscous dissipation at interfaces between solids and fluids, a stack with an
appropriate temperature gradient can generate acoustic power.412 Resonance frequency is
determined by thermoacoustic element lengths and dispersion caused by narrow plate spacing.
Both Q and fy can be incorporated into a single quantity, the complex eigenfrequency @w=27fp -
info/Q, which describes the temporal response throughout the resonator of an excited resonance
at t=0, P{(t)/P1(0) = exp (-ict). The complex eigenfrequency of a radial wave prime mover
below the onset of self oscillation will be computed to illustrate the appropriate technique for the
radial géometry, and to point out the dependence of fg on stack plate spacing.

When determining the quality factor or onset temperature for plane wave systems, it is
usually sufficient to consider a constant temperature gradient in the stack.412 For the radial
geometry, however, because a constant amount of heat is spread into an increasing area as
increases, the ambient temperature gradient is given by

d 1
Tor®)= Tow S ——1—— (10
oD = Ro=r v d/ 1)
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where d=(r, - ra) is the stack length, r and rp are the inner and outer radius of the stack, and
Toee=(Th - Ta)/(tb - ta). Note that Toy(r) = Toeo Wwhen d <<, as is the case in the short stack
approximation below, and when r; — o= which approximates the plane geometry.

The complex eigenfrequency can be determined by numerically searching for values of fg
and Q that give the same result for the calculated impedance looking to the right at some
position, with that computed looking to the left.# Consider the resonator region | in Fig. 1. By
symmetry, a particle velocity node must occur at the resonator center, yielding an expression for

the acoustic pressure,

Pi(r)=P1(0) Jo (kr) , " (1
and for the specific acoustic impedance,
.. Jo (kr)
Z(r)=-i Zintm . (12)

Equations (11) and (12) can be obtained by using r—0, d—-rt, and Z(0)— in Egs. (5) and (6),
respectively, so region 1 in Fig. 1 can be regarded as a special case of region 3. The complex
propagation number k is from Eq. (4), and the intrinsic or characteristic impedance is from Eq.

(2) with Q=1. Note that even though i = V-1 occurs in Eq. (12), impedance is not purely
imaginary because of the complex propagation number k. In other words, Z(r) in region 1 must
still reflect the fact that thermal and viscous dissipation occurs at the resonator walls. Define Z. -
as the specific acoustic impedance at the inside boundary of the heat exchanger that faces the
resonator center. Z. is computed from Eq. (12) using the appropriate inner radius of this heat
exchanger. It is now necessary to substitute the complex eigenfrequency ¢ for ® in Egs. (5)-(6)
and Eq. (12).

Z. is stored as the impedance looking towards the resonator center from the inner radius
of the heat exchanger. Eventually Z. must be compared with Z,, where Z, is the impedance at
the same location, but looking towards the resonator wall. To compute Z,, begin at the resonator
wall where impedance is much greater than the characteristic impedance poc, but is finite
because thermal dissipation occurs during the acoustic cycle as the gas undergoing compression
and expansion exchanges heat with the wall. The boundary layer impedance, denoted by Zyj, for

the cylinder wall can be shown to bel4

2 . 2 1.
Zy1 = - poc” Pocp Jo[(+aided _ POE”  fipocp for a>> 8¢ . (13)
y-1 ok Jp[(1+)a/d Y- 0K

In Eq. (13) 8 = \] 2x/powcp is the thermal boundary layer thickness (ie. the distance heat can
diffuse during time 1/@), and the second approximate form is just the expression for boundary

layer impedance when the wall is flat.6.14 In thermoacoustics the second form of Zy| is

applicable since a >>d.
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Having established Zp), impedance at the outer radius of the outer heat exchanger is
computed using Zpj and Eq. (6). This value of impedance is used again with Eq. (6) to compute
impedance at the outer radius of the stack (region 2 in Fig. 1), though this time with k and Zjp,
appropriate for the heat exchanger and with d the heat exchanger length. Using Eq. (7) and our
computed impedance at the outer stack border as the boundary condition, numerical integration
of the differential equation yields the impedance at the inner stack border. Finally, Eq. (6) is
used again to translate impedance from the inner stack boundary to the inner boundary of the
inner heat exchanger. Denote this value of impedance as Z... If it is found that Z_ = Z,, then our
current choice of @ is the complex eigenfrequency; otherwise, the entire procedure must be
repeated with another trial value of @, Note that both the real and imaginary parts of impedance
must be matched by adjusting both the real and imaginary parts of ¢, which is equivalent to
adjusting fg and Q.

It should be noted that this procedure can be used to compute Q<O (i.e. exponential
increase rather than decrease of acoustic pressure in the resonator) that occurs for a superheated
prime mover for a short time after Q spoiling ceases.!3 When a prime mover goes into onset, the
resonator has become unstable with respect to acoustic oscillations, and Q — . The
eigenfrequency is real in this case and is given simply by @¢ = 2nfp. Stability curves for the
prime mover# 11 can be computed by adjusting values of fo and To.. until impedance is matched.
Different resonator modes can be studied by choosing appropriate starting values of fo.

C. Design of a thermoacoustic enhanced photoacoustic spectrometer.

The example calculation for resonance frequency and Q of a radial prime mover
considers the outer stack location. Specific dimensions will be used in describing the resonator,
heat exchangers and stack. Resonator overall dimensions are similar to those reported in
photoacoustic spectroscopy measurements performed using empty resonators!3:16 (no
thermoacoustic elements). Refer to Fig. 4. A laser beam modulated at the acoustic resonance
frequency passes through the resonator to couple energy into a particular resonator mode when
light is absorbed by aerosols and/or particular gaseous species.!5:16 The acoustic signal is
proportional, among others, to the laser power, to the absorption coefficient of the gaseous
species or aerosol (hence the connection with spectrosgopy), and to the resonator Q.
Thermoacoustics offers the possibility of adjusting Q by controlling the temperature gradient of
the stack. Resonator Q increases with the applied temperature gradient when the hot end of the
stack faces a pressure antinode and decreases when the hot end faces a pressure node. It can be
shown that when the acoustic noise in the resonator is Gaussian, and when the bandwidth of the
microphone detection electronics is much greater than the resonator bandwidth, the signal to
noise ratio for the measurement scales as Q/2. The Q!/2 dependence of the signal to noise ratio
can be qualitatively understood as follows: signal and noise are both enhanced by Q; however,

-9-
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the noise bandwidth is proportional to Q-!/2.  Hence it is desirable to perform photoacoustic
spectroscopy with high Q resonators. A thermoacoustic enhanced resonator can be described as
an analog amplifier with adjustable gain Q for frequency fo, with adjustable bandwidth Af=fy/Q,
and with discrimination of signal against acoustic Gaussian noise of Q*/2.

Refer to Fig. 4. System dimensions are specified starting at resonator center. The inner
portion of the resonator, the ambient heat exchanger, and the inner radius of the stack all are
assumed to be at an ambient temperature T, = 293 K. The quantity To.. in Eq. (10) will be held
at a constant value Tgeo = 26.6 K/mm. The resonator height is taken as h = 5 cm. The distance
from resonator center to the ambient heat exchanger is 8.98 cm. The cold heat exchanger is 1.08
mm long. Three stack lengths are considered: d = 3.28 mm, 0.8d, and 1.2d. The quantity R
denotes both the stack and heat exchangers plate spacings, and will vary in the calculation. The
plates thus become thicker as R increases since the calculation is for constant stack and heat
exchanger porosity Q=0.7. The hot heat exchanger is 1.15 mm long. The section from the hot
heat exchanger to the outer diameter of the resonator is 9.98 mm long, and its temperature is
Ty=380.2 K for d=3.28mm, is Tp=362.8 K for 0.8d, and is Tp=397.7 K for 1.2d. The working
fluid is taken as dry air with ambient pressure Pg = 100 kPa. For comparative purposes the
resonance frequency and Q were computed for both an empty resonator having diameter 21.06
cm, and for the above thermoacoustic arrangement when To(r) = 0.

Figures 5a) and 5b) show the resonance frequency, fo, and Q as a function of stack and
heat exchanger plate spacing, R. The empty resonator has fo=1984 Hz and Q=550. The case of
no stack temperature gradient and Fig. 5a) will be considered first. Starting at largest R, fo
decreases as R decreases because the phase velocity in stack and heat exchangers also decreases.
Now as R = 0, fg increases since the attenuation of sound in the stack and heat exchangers is
quite severe, and the characteristic impedance of these elements — . Hence the cold heat
exchanger begins to approximate a nearly rigid termination and fq is approximately determined
using the distance from the resonator center to the cold heat exchanger and the ambient sound
speed. The minimum fg occurs as a trade-off of these dependencies on R. In Fig. 5b) Q
increases with R for no temperature gradient because the thermal and viscous boundary layers
become smaller in relation to the plate spacing so the aendant losses decrease. Note that Q also
increases as R — 0 because the cold heat exchanger better approximates a rigid termination in
this limit.

A fundamentally different dependence for Q occurs when the stack has a sufficiently
large temperature gradient. Q increases by as much as a factor of 2 over the empty resonator
value for a stack plate spacing of R = 0.21 mm. The thermal disturbance number at the hot end
corresponding to this value of R and the stack with length 1.2 d is At = 3.81, which gives R/dk =
2.7. Gas within = 1.35 8¢ of the stack walls receives some acoustic power gain due to the

-10-
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temperature gradient in addition to the normal viscous and thermal losses present with no
temperature gradient.# This result again!— demonstrates that the important length scale for
optimal thermoacoustic performance is 0. The stack is longest for the thickest line in Figs. 5a)
and 5b), which produces the greatest thermoacoustic gain (i.e. highest Q) since, as shown in the
short stack approximation below, acoustic power production and dissipation in the stack are
proportional to stack length. As R increases beyond the value for maximal Q, the volume of gas
receiving thermoacoustic gain decreases as does Q. For R — 0, Q decreases since the gas begins
to take on the same temperature as the stack (thermoacoustic drive ceases) and viscous losses
increase.

The bending-up of the resonance frequency curves in Fig. 5a) for decreasing AT=R/8«
has previously been observed experimentally for a stack in a plane wave resonator where the
ambient gas pressure and hence d¢ was varied, though no explanation of the effect was given.t
Note that the frequency bends up for larger plate spacing as the hot end temperature increases.
This can be explained in part by noting that 3y = (k/pg)!/2 increases with increasing
temperature. Hence as the hot end temperature increases, At decreases and the resonance
frequency can bend up for larger R than when no stack temperature gradient is present.

Close examination of Fig. 5a-5b shows that the peak in Q for a particular plate spacing
occurs in the vicinity of rapid variation of the resonance frequency. It is unfortunate that the
peak in Q does not correspond to the relative minimum of resonance frequency. If it did, slight
variations in any of the parameters, such as ambient temperature and pressure, would cause only
small changes of the resonance frequency. It should be noted that a similar dependence for Q
and resonance frequency were obtained for the plane wave geometry, and that this geometry can
also be used to increase the Q of these resonators for photoacoustic spectroscopy.

III SHORT STACK APPROXIMATION

The short stack approximation!-34 is given and used to compare some basic properties of
radial and plane wave engines. Basic assumptions are discussed in Refs. 1,3, and 4. The stack
temperature gradient is the constant Tg.. in the short stack approximation (see the discussion
below Eq. (10)).

Pressure, particle velocity, and particle displacement amplitudes between the stack end
and the resonator wall are taken to be the standing wave forms

P1(r) = P1(0) Jo (kor) P1(2) = P1(0) cos (ko2) » (14a,0)

v = 2O 7 ey vs@ = 2 gin (kga) (15a,0)
poc Qpoc

vs(9) (16)

gs(‘b) =7
()
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where Eqs. (14a) and (15a) [Eqgs. (14b) and (15b)] refer to the radial [plane] wave geometry. The
wavenumber in the empty tube is kg=wg/c and 0y is the resonance radian frequency, € is stack
porosity, and ¢ refers to either phase kor or koz. Use of Egs. (14-16) in Eq. (50) of Ref. 3 readily
yields
52(¢) - _ QAres Plz(‘b) vs(9) BTo Im [F*O\pF* (V)]
(1 + Npr) IF(A)I2
po Cp QAres Vs(9) Im {F*(A1) + Npr FQV))
2 (1 = Npe2) [F(L)2
where Tog = Tor and Toe = To are the constant temperature gradient for radial and plane wave
geometry, respectively. The first term in Eq. (17) is the time averaged heat flow due to
compression of the gas and can be exploited to construct acoustic refrigerators.! This heat flows

Es(®) Top (17)

in the stack towards the nearest pressure antinode, and thus heat is transported from the cold to
the hot end of the stack. Gas displaced to a region with different stack wall temperature results
in heat transfer given by the second term of Eq. (17).! This heat always flows from the hot to
cold end of the stack and is independent of B. The stack acts as a refrigerator when the
magnitude of the first term is larger than the magnitude of the second and the signs of these two
terms are different. The second term of Eq. (17) thus reduces the cooling capacity of the
refrigerator. For a prime mover, the magnitude of the second term in Eq. (17) is greater than the
magnitude of the first term, so net heat is transported from hot to cold.

The work done in the stack is computed by use of the impedance translation theorem 3
Denote by VG = Ares 2 d the ambient volume of gas in the stack. The work flow to first order in

kod can be shown to have the same form as for the plane wave geometry,3:4.17

? Vo P2 Vg veX9) Im F*
Ws0) = @ YR - ) Im k) + 0RO @) ’:;(x)%)
. YaP®u® 7 IEADER) .
o,

The first and second terms, always > O, are dissipation of potential and kinetic energy per unit
time due to thermal and viscous effects. The third term is acoustic power produced or absorbed
by the stack due to the ambient temperature gradient, and makes possible use of a thermoacoustic
engine as a sound source. The stack will produce sound when the last term has a sign different
than the first two terms, and a magnitude greater than the sum of these terms.

The resonator area at the stack is Ares=2%rh [Ares=ma2] for radial [plane] wave geometry .
Referring to Eq. (18), potential energy dissipation is proportional to {Ares P12(0)}, kinetic energy
dissipation is proportional to {Ares Vs2(0)}, while thermoacoustic gain is proportional to {Aces

212 -
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P1(¢)vs(d)}. These quantities are shown in Fig. 6a for plane, and Fig. 6b for radial geometry.
Note the high symmetry in Fig. 6a, and lack thereof in Fig. 6b for the radial geometry. Referring
to Figs. 2a-b and Figs. 6a-b, one would like to place the stack at the locations of maxima for
thermoacoustic gain; however, KE loss (which is usually more severe than PE loss) can be
significantly reduced by placing the stack closer to pressure antinodes at the price of a slightly
smaller thermoacoustic gain. Gain and losses — 0 as r — O for the radial geometry in Fig. 6b
due to the dependence on Ares.

A number of assumptions are necessary to compare radial and plane geometry
refrigerators and prime movers. The assumptions common to both refrigerators and prime
movers are given here. The same resonator will be used for both geometries in the comparison
though the stack configuration will be as shown in Fig 2a (Fig. 2b) for the radial (plane)
geometry. Resonator aspect ratio a/h is determined by the condition that plane and radial stacks
operate in resonators with the same eigenfrequency (a condition likely to be avoided in practice).
The conditions for determining plane and radial propagation numbers are koh = 7t and kga=3.832.
Thus the resonator aspect ratio is a/h=3.832/n. The working fluids are Helium or a mixture of
60% Helium and 40% Argon so the assumed Prandtl numbers are Ny, = 2/3 or Npr = 0.392,
respectively. Ideal gas relations are used for other gas properties such as coefficient of thermal
expansion and ratio of specific heats. The dimensionless thermal disturbance number
At=(pocp /)12 R = V2 R/, is used to characterize the dynamic thermal interaction between
fluid and solid, where R is the stack plate spacing. The maximum potential energy density!
(which is half the stored overall energy density) in each resonator is assumed to be equal in both
cases, and is used to normalize the acoustic pressure using the relation (1/7V) IPl(q))ZdV =1
Here V is the resonator volume, and it is assumed that even when a short stack is present the
pressure relations, Egs. (14a,b), are valid throughout the resonator. The normalization of radial
(plane) geometry is P1(0) = 2.483 (V2).

A nondimensional temperature gradient was previously* helpful in the analysis of prime
mover performance, and will also be used here. It is given by

B ATo

=" 19

U= ZTked , (19)
where d is the stack length, AT = (d Tow.) for radial and ATo = (d Tg,) for plane geometries see

the discussion below Eq. (10)] is the ambient temperature difference between stack ends and can
be positive or negative. The stack location is specified by the phase ¢(r)=kor [¢(z)=koz] for

radial [plane] geometry. By combining the expression for Ares With the expressions above
defining the resonator dimensions, ko? Ares=2120(r) [ko? Ares=3.8322 m] for radial [plane]
geometry. The dimensionless forms of plate spacing AT, stack location ¢, and stack temperature

gradient T are an example of similitude as applied in thermoacoustics. 18
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A. Comparison of radial and plane wave refrigerators.

Refrigerators, cryocoolers, and air conditioners are usually designed for a given cooling
temperature and cooling capacity. The Coefficient of Performance, COP, is the ratio of cooling
capacity to the input power necessary to operate the refrigerator , and is usually also specified as
a design criteria. The Carnot COP will be denoted as COPc and is the highest COP possible for
a given temperature span.! A refrigerator designed solely for high cooling capacity will likely
have low COP, so often a trade-off between high cooling capacity and high COP must be
accepted. Some design choices for thermoacoustic refrigerators are the working fluid and its
ambient pressure, resonator size, sound source, heat exchangers capacity, stack geometry and
material of construction, stack length and its location in the standing wave, and resonator mode
(plane or radial) to use. With such a large list of design criteria and possible design
configurations to consider, the challenge of comparing radial and plane wave geometry
thermoacoustic heat pumps appears at first to be daunting. Granted, no single set of criteria
covers all aspects of refrigerator design. However some design exploration using a reasonable
set of system equations helps to build our intuition.

As an aid for determining how to compare radial and plane wave acoustic refrigerators,
consider the simple example developed by Swift! for his purpose of illuminating basic acoustic
refrigerator properties. The example assumes an inviscid gas (Npr = 0) and the boundary layer
approximation for the thermal interaction of gas and stack. Heat flow in this example (using our

notation) is Qz((b) = -(Ares/NZAT) BTo P1(9) vs(9) (1 - T) where [=Tog/Tog,c is the ratio of the
actual stack temperature gradient to the critical temperature gradient given in Egs. (1a-b) for
plane and radial geometries. Coefficient of Performance is COP=I'COPc. For refrigerators, 0 <
I < 1. Immediately appreciate that to increase COP/COPc, I'=1 is desirable. However, the

cooling capacity of the refrigerator Q2(¢) — 0as ’'>1. An acoustic refrigerator with large COP

is likely to have low cooling capacity.
Our purpose here is to compare radial and plane wave refrigerators, not, for example, to

decide on the best working fluid. To this end a useful quantity, the Coefficient of Compromise

Cpn. is defined as 4
COP m - .
Cm = (5513;) Q@) . (m20) (20)

where different values of m can be used to choose a desired compromise between COP and
cooling capacity. For example, Cy refers to refrigerator design where Coefficient of Performance
and cooling capacity are similarly emphasized, and Cs has Coefficient of Performance
emphasized considerably more than cooling capacity. Cm has units of Watts. The next task is to
show how to calculate Crq for radial and plane wave refrigerators to within a common factor.
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The Coefficient of Performance is COP=Q2(¢)/W2(¢). A technique similar to Swift's! is
used to obtain COPc=T/ATg where T¢ is the stack cold end temperature and ATo=(TH-Tc) is
the temperature difference of the stack ends. Using the definition of T in Eq. (19), the
thermodynamic identity B2 Ty c2=(y - D)/cp, and Egs. (17)-(18) for heat and work flows, gives

_21[ Jo @1 (0) Im [F*ADE" (W]  2J;%@) 1 Im{F"(\1) + Npr FQU)
COP Q  (I1+NpFMR2 Q2 y-1 (1 = Npe2) IF(V12 ) ;5

COPc = 5 : Ak
(= 1) 20)im Fop) + L@ I EQ) o Jo @1 (@) Im (F AD/ET())
Q2 [F)2 Q L= Npr

2D

for radial wave refrigerators. The plane wave refrigerator COP/COPc is also given by Eq. (21)
with the replacements Jg (¢)—cos (¢) and J; (9)—>sin (9). The stack length, d, can be calculated

using kod=(BT)/(2lt| COPc).

Heat flow Q2(¢) is given in a different form from Eq. (17) to show how it is calculated in
Eq. (20) to obtain Cpy.  The rewritten expression for cooling capacity for radial wave geometry

is

Qa0) =

Q ko?Ares P1(0)2 BTo(Jo (0)1 (9) Im [F*ADE" W] 2, 29) _t_Im{F'Ap)+Npr FQ)) (22)
[2poc ko?] Q  (1+Np)FVZ Q2 y-1 (1-Npd)FQ)R ]

The plane wave result is also given by Eq. (22) with the replacements Jg (¢)—cos (9) and

J1 (®)—sin (¢). Since use is made of the same working fluid and kg in the comparison of radial
and plane geometries the quantity [2poc ko?] is common to both plane and radial refrigerators, so
for simplicity, cooling capacities discussed below were computed using [2poc ko?]=1. It has
already been shown how to calculate all of the other parameters in Eq. (22).

Heat flow in Eq. (22) vanishes for a sufficiently large dimensionless temperature gradient
L

defined as Tmax. Evaluating the nontrivial solution for Qz(q:) — 0 yields

| -Npe Py(®) Im (E*DE* (V)]
Tmax = — -1 . (23)
max= T eve® | Im (F*A) + Npc FQV)

The quantity Tmax is useful for comparison with values of T and is analogous to the mean critical
temperature gradient in Eq. (1). However, even for T> Tmax, the thermoacoustic engine is not
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necessarily acting as a prime mover.! There exists a range of T values such that T, < 7T < Tom
‘ where the engine is not a refrigerator or prime mover, where Tpm is the minimal temperature
gradient necessary for the prime mover to operate. |
Comparison of radial and plane wave refrigerators now turns to the mathematical and
computational side. We define the best radial or plane wave refrigerator as the one which has the
highest Cry. Following specification of the working fluid's ¥, B, and Ny, and the stack porosity
Q, values of AT, ¢, and T can be floated around using numerical techniques until they land on a
specific unique set of critical values that produce a maximum of Cr,. Cooling capacity and
COP/COPc can be obtained using these critical values of AT, ¢, and T. Keep in mind that stack
‘ plate spacing can be determined from A, stack location in the standing wave from ¢, and both
‘ stack length d and refrigerator temperature difference from the combination of T and the desired
COPc. |
Table 1 shows the results of C| optimization, where cooling capacity and COP/COPc are
taken to be equally important, for helium as the working fluid. Computations were performed
for stack porosities of Q=0.7 and Q=0.5. As Q decreases, particle velocity in the stack must
increase to ensure that volume velocity is continuous at the stack-resonator section interface. As
noted in Table 1, radial inner has a higher value of A than the others because larger values of At
correspond to less overall KE loss 19 and thus the stack position r/a=¢/(koa) can be closer to the
peak of thermoacoustic gain in Fig. 6b. Since heat flow is proportional to r for the radial stacks,
the radial inner stack, which is at smaller r, must be pushed as far as possible away from the
origin to achieve reasonable heat flow, though at a cost of increased viscous loss. The critical At
for the radial inner case is larger than the others to reduce these viscous losses. Decreasing stack
porosity increases the optimal AT, again to circumvent KE loss.19 Stack position is reported in
Table 1 as r/a for radial wave and z/h for plane wave geometries. Note that the optimal stack
positions are well away from the locations of maximum thermoacoustic gain in Figs. 6a and 6b
due to the need for reducing KE dissipation. Low values of T and /tmax indicates that the stack
favors cooling capacity over COP/COPc. Radial inner has the lowest and T/Tpax for the same
reason that this case had the largest AT. The stack with highest cooling capacity is radial inner.
Note that decreasing stack porosity decreases cooling dapacity and COP/COPc in all cases. Also
note that the radial outer has highest COP/COPc. Finally, plane stacks have the largest Ci.
Having seen that small stack porosity compounds viscous losses, it is increased to 2=0.9
to reduce these losses. Viscous losses can be reduced further by going to a molar mixture of
60%He 40%Ar for which the Prandtl number is taken to be Np=0.392. Also investigated are
compromise refrigerators where cooling capacity is emphasized more than COP/COPc (m=0.5 in
Eq. (20)), where they are on equal footing (m=1), and at a number of cases where COP/COPc is
emphasized more than cooling capacity (m=1.5 to 4 at steps of 0.5). The findings are that plane
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wave refrigerators have higher C, when 1 € m <5, indicating that they perhaps are the best
overall choice when COP/COPc must be emphasized more than cooling capacity; and that the
radial wave inner stack has higher C,;, when m=0.5 indicating that they perhaps are the best
choice when cooling capacity is emphasized more than COP/COPc. Figure 7 clearly shows that
increasing COP/COPc decreases cooling capacity for all of these acoustic refrigerators. Note
that the radial outer case has the highest COP/COPc, though the plane case is very similar. The
cooling capacity of the radial inner case is highest for small m, but the plane case is larger for
large m. Figure 8 shows that A increases as m increases, which implies that wider stack plate
spacing reduces viscous losses and thus increases COP/COPc, but reduces cooling capacity since
the optimal value for cooling capacity is A1=3.2.3 Keeping in mind the ideal stack positions for
obtaining high thermoacoustic gain and low KE losses due to gas viscosity as shown in Figs. 6a-
6b, Fig. 9 shows that as COP/COPc is emphasized increasingly more than cooling capacity, the
stack location migrates away from thermoacoustic gain and towards low KE loss.

For fixed COPc, Fig. 10 shows that the stack temperature gradient increases as
COP/COPc is increasingly emphasized, or, equivalently, stack plate spacing kod=(BTo)/(2!1|
COPc) decreases. The influence of the thermoacoustic term (the third term of Eq. (20), which is
opposite in sign to the first two terms) for work flow increases for larger Itl which has the effect
of increasing COP/COPc. Figure 11 bolsters this observation since T/Tmax— 1 when COP/COPc
is emphasized much more than cooling capacity. Note that the radial inner case has the lowest
T/Tmax Which is consistent with this case producing high cooling capacities and low COP/COPc.
Radial outer and plane cases have very similar T/Tmax ratios.

B. Comparison of radial and plane wave prime movers.

Prime movers begin to make sound when a sufficiently large temperature gradient is
established across the stack.!:3:4:10-13 Acoustic power generated by the stack must be large
enough to overcome thermal and viscous losses occurring in the stack, heat exchanger, and
resonator sections, and possibly to provide power for an acoustic load. The first two terms of Eq.
(18) describe dissipation of potential and kinetic energy in the stack. Equation (18) does not take
into account acoustic power dissipation in heat exchangers and resonator sections, or acoustic
power that might flow out of the resonator when the pritne mover is being used as a sound source

for another device. All such dissipation is swept into a single inherently positive quantity Wex:.
Hence the thermoacoustic sound source begins to operate when the temperature gradient is
sufficiently large that the inequality

W) + Wext < 0 (24)

is satisfied.4 Define a dimensionless external work wex flow,
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P Wext . (29)

w =
T V6 P02 @

For example, in a helium filled plane wave resonator containing a fairly optimal prime mover

stack, a value Wexs = 0.52 was determined.4

The magnitude of each term in Eq. (18) is determined by the phase angle ¢, the stack
plate spacing surrogate AT, and thermal and transport properties of the working fluid. The
dimensionless stack temperature gradient T is given in Eq. (19). For the proper choice of stack
placement there exists a minimal value Tmin(dmin AT) necessary for onset as a solution of Eq.
(24). In previous work, it was shown that the minimal value of the nondimensional temperature

gradient for onset of oscillation for the plane wave geometry was4

1 - Npr ( " - . -
- 1) ImF* (A Im F*(A)/ 2
i (F" O/ F* V)] (Y= 1) ImF* (A1) + Wexd)[Im FFQNQFA)Z + Wext),  (26)

where the positive solution applies when the sign of the product of pressure and particle velocity
in the standing wave is negative. Stack placement in the standing wave is determined by the
phase angle corresponding to the minimum onset temperature gradient in Eq. (26):

Tmin=1%

tan O min) = Y-DIm F'(AT) + Wext ' 27

Im E*QNQFV)2 + Wexe
where ®min [T - ®min] is the phase angle that corresponds to the negative [positive] solution for
Tmin in Eq. (26) (the plane inner [plane outer] in Fig. 2b).
A similar analysis can be performed for determining Tmin in the radial wave geometry;
however, a closed form solution for the general case has not been found. Solving Eq. (24) for t

yields
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- _ Q(l - Npr)
Im {(E*A/E* (M)
Wext e Jo@®  ImEQ) J©0)
—— + (Y= D ImF'(A '
(210 ovi@ e T aRwR 20 } .

where the reader might note the close correspondence with Eq. (6) of Ref. 4. The derivative of
Eq. (28) with respect to ¢ is

G(6) = wext (J0 20) - J1 2®) ) + (Jo 2) - "’(—q’:‘)”—@ +l) 2(¢>) X
N Im F*(A)
- 1) ImF*(A1) Jo 2(9) - J;?
((v ) ImE0ir) 1o X0) = 1S (¢>) , 29)
from which ®min is determined by solving G(®min) = O with numerical techniques. Then
Tmin = T(®min) (30)

is the desired minimal value of the dimensionless temperature gradient that is needed for a radial
wave prime mover to operate. The radial inner and radial outer cases in Fig. 2 can be evaluated
by choosing appropriate initial values for ¢.

The optimal temperature gradients Tmin for plane and radial wave geometries in Eqs. (26)
and (30) are functions of A1. Figure 4b of Ref. 4 shows that Tmin(AT) has a unique minimum for
the proper choice At. Numerical techniques can be used to obtain the minimum value of Tpjy as

a function of AT for the general case of arbitrary G-Vext. Thus there is now a procedure for

obtaining the lowest possible operating temperature gradient necessary to deliver a given amount
of acoustic power by adjusting engine properties of stack location in the standing wave and stack
plate spacing. One criterion for finding the “best” geometry is to find the stack in radial or plane

geometry which has the smallest Tmin for given Wext.

Several assumptions are necessary to compare prime movers in radial and plane wave
geometry, in addition to those given in Sec. M. Stack work flow in Eq. (18) is linearly
proportional to stack length so for the comparison equa; stack lengths are assumed. The actual

acoustic load ch[ that must be delivered by either plane or radial wave stacks is assumed to be
the same. Using these two assumptions along with the relations koh = %t and koa = 3.832 that
describe the resonator geometries, and the normalization for P (0) for radial and plane wave
geometries as discussed in Sec. III, the relation between scaled external work for radial and plane

geometries is
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= T 0.7581
Wextor = Wext,p kor' R 3D

where kor=0 is the phase angle of the radial stack, and the subscripts p and r refer to plane and
radial wave geometries. Equation (31) is used to obtain the scaled external work for the radial
stack that corresponds to a given plane wave geometry external work. A measure of engine

performance is efficiency defined as

Wext

Nr,MNp = (32)

Q
The ratio n/np of radial to plane wave efficiencies is presented below. ‘
Figure 12 shows values of AT that minimize Tpjp for the radial outer, radial inner, plane
outer, and plane inner stacks in Fig. 2. The inset graph shows that A is the same for all stacks

when »'vext,p — 0. Viscous losses in the stack, given by the second term of Eq. (18), are the

dominant loss mechanism in this limit, and can be reduced by choosing the plate spacing such
that Ar>>3.2. However, thermoacoustic gain is largest for A1=3.2. The optimal choice for At is

a trade-off between viscous loss and thermoacoustic gain. As cht,p increases, viscous losses in
the stack no longer dominate the acoustic load that must be delivered by thermoacoustic gain, so
A1=3.2 determines the optimal plate spacing to use.

The optimal stack location, determined from Eq. (27) for plane and Eq. (29) for radial

wave geometry, is shown in Fig. 13 as a function of »'vext‘p. By symmetry, the plane wave stacks

are the same distance from resonator walls located at z/h=0 and at z/h=1. For \;vext,p -0,

viscous losses can be reduced by moving the stack closer to velocity nodes, though some

thermoacoustic gain is sacrificed (see Figs. 6a and 6b). As »;/ext,p increases, viscous losses in
the stack no longer dominate the acoustic load that must be delivered by thermoacoustic gain, so
the optimal stack positions approach the positions for maximal thermoacoustic gain shown in
Figs. 6a and 6b. ;

The dimensionless temperature gradients for onset are shown in Fig. (14). Values for
plane and radial geometries were obtained using Eqs. (26) and (30). The inset graph shows that

ITmin! is the same for all stacks in the limit \;vm,p — 0, which can easily be shown from use of
Egs. (26) and (30). The sign of Tmin is determined from the requirement that the hot end of the
stacks in Figs. 2a and 2b must face pressure antinodes so that the third term of Eq. (18) provides
gain (if the direction of the temperature gradients were reversed, the stack would only provide
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loss). Note that the radial inner stack has the lowest ITy;a!l, and in this sense, is a better choice
than the other stacks. Based on the critical temperature gradients show in Fig. 3, one would have
guessed that radial outer would have the lowest Itm;,l, and radial inner the highest, so at first
glance, the results in Fig. (14) are counterintuitive. However, the critical temperature gradients
in Fig. 3 do not account for viscous losses that depend on the square of particle velocity. Careful
examination of Figs. 6a and 6b shows that radial inner has the highest ratio of thermoacoustic
gain to kinetic energy (viscous) loss, followed by plane and radial outer, and hence this ratio
largely determines that radial inner has the lowest ITinl. Also note that this ratio is inversely
proportional to the critical mean-temperature gradients of Fig. 3.

Efficiency ratios of radial inner and radial outer to plane are shown in Fig. 15 as a
function of the scaled external work that must be delivered by the plane stack. Note that the
radial outer stack generally is slightly more efficient than the plane wave stacks, and the radial

inner is only more efficient than the plane wave stacks when Wext,p — 0. For efﬁciencyl
considerations alone the radial outer appears to be the optimal choice.

IV. CONCLUSION
A general linear framework was developed for analyzing radial wave thermoacoustic

engines. Pressure and specific acoustic impedance translation equations were developed for the
various thermoacoustic elements, and the stack enthalpy flow can be expressed in terms of these
quantities. Theory for the use of thermoacoustic engines to enhance the signal to noise ratio of
photoacoustic spectrometers was developed. In this example it was noted that the dependence of
resonance frequency on stack plate spacing can be very different, depending on whether a
temperature gradient is applied across the stack. The thermoacoustic enhanced photoacoustic
spectrometer was likened to an analog amplifier with amplification Q, bandwidth fo/Q, and
discrimination against Gaussian acoustic noise (signal to noise ratio) Q!/2, where fp is the

resonance frequency and Q is the quality factor.
The short stack approximation was given for radial and plane wave geometries, and was

used to compare the performance of refrigerators and prime movers (or sound sources)
constructed using these stacks. Refrigerator performange was evaluated using the weighted
product of cooling capacity and coefficient of performance as a measure of capability. Prime
movers were compared using a given acoustic power as a load and the criterion that a minimal
onset temperature gradient and high efficiency are indicators of good thermoacoustic sound
sources. Independent parameters for both refrigerators and prime movers were stack plate
spacing and stack location in the standing wave. Refrigerators had stack length as an additional
independent parameter. Results of the comparison are that engines in the plane wave geometry
are better overall refrigerators when maximizing both cooling capacity and coefficient of
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performance, though radial stacks placed near the resonator center can have higher cooling
capacities and radial stacks near the resonator wall have slightly higher coefficients of
performance. The radial wave geometry yields prime movers with lower temperature gradients
and higher efficiency for a given acoustic power load. For both refrigerators and sound sources
it was noted that to improve thermoacoustic engine performance, the viscous losses associated
with the square of particle velocity need to be lowered without sacrificing too much desirable
thermoacoustic gain associated with the product of particle velocity and acoustic pressure.
Finally, the radial analysis and intuition developed here is qualitatively applicable to nominally
plane wave resonators where the resonator radius increases along the axis.
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Table 1. Optimized refrigerator parameters for Helium as working fluid.

Quantity

Tmax
Q2(0)

COoP
COPc

Radial Inner

Q=70% (2=50%)

4.062 (4.150)

0.220 (0.196)

-0.168 (-0.134)

0.382 (0.371)

18.50 (15.49)

0.162 (0.126)

2.988 (1.955)

Plane
Q=70% (Q2=50%)

3.858 (3.900)

0.096 (0.075)

-0.266 (-0.243)

0.408 (0.403)

14.60 (11.71)

0.244 (0.228)

3.560 (2.665)

Radial Outer

Q=70% (Q2=50%)

3.828 (3.871)

0.928 (0.943)

0.281 (0.256)

0411 (0.406)

10.68 (8.69)

0.254 (0.237)

2.715 (2.062)
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FIGURE CAPTIONS

l. Possible arrangements for a radial wave thermoacoustic engines. Cold heat exchangers
face the pressure nodes. The three regions used in analysis are shown. The z axis (not shown) is
perpendicular to the plane of the paper. Distance d is shown as the cold heat exchanger length

and is generally used to represent the length of any thermoacoustic element.

2. Coordinate system and stack locations (e.g. Radial Inner, etc.) for a) radial and b) plane
wave resonators. Resonator height is h and radius is a. Particle velocity is in the r direction in a)

and is in the z direction in b).

3. Dimensionless critical temperature gradient for plane (dashed line) and radial wave
engines (full lin€).

4. Conceptual design of a thermoacoustic enhanced photoacoustic spectrometer.

5. a) Resonance frequency and b) quality factor of a radial wave prime mover below the

onset of oscillation, as a function of stack and heat exchanger plate spacing, R. The light,
medium, and heavy weight curves labeled in a) as 0.8d, d = 3.28 mm, and 1.2d all are for T =
26.6 K/mm. The medium weight curves in a) and b) labeled d, Tge = 0, are for no temperature
gradient on the stack of length d, and the entire resonator at the ambient temperature. The
dashed lines are for a resonator with no stack or heat exchangers.

6. Stack thermoacoustic gain, and losses of kinetic and potential energy, as a function of
stack position in a) a plane wave resonator, and b) a radial wave resonator. Numbers on the
graphs indicate positions of relative extrema of thermoacoustic gain. Though not shown as such,
KE losses due to gas viscosity are usually more severe than PE losses due to gas thermal

conductivity.

7. Cooling capacities and Coefficient of Performance ratios as a function of the emphasis,
m, on Coefficient of Performance. Calculation points are shown by the symbols and the lines
connect these points for viewing ease. Solid symbols are cooling capacity, squares refer to radial
inner stacks, triangles to radial outer, and circles to plane stacks. COP/COPc nearly overlap for

plane and radial outer.

8. Thermal disturbance numbers A as a function of the emphasis, m, on Coefficient of
Performance. The inset graph shows that At is the same for all when the stack has no external

work load. Symbols are the same as in Figure 8.
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9. Stack locations as a function of the emphasis, m, on Coefficient of Performance.

Symbols are the same as in Figure 8.

10. Nondimensional temperature gradients T as a function of the emphasis, m, on Coefficient

of Performance. Symbols are the same as in Figure 8.

11.  Ratios of the nondimensional temperature gradient T to the maximum possible value for
refrigeration, Tmax, as a function of the emphasis, m, on Coefficient of Performance. Symbols

are the same as in Figure 8. The radial outer and plane results nearly overlap.

12. Thermal disturbance number At as a function of the external work load that must be

delivered by the stack in radial (doubly thick lines) and plane wave resonators. The inset graph
shows that A is the same for all cases when the stack has no external work load.

13.  Optimal stack location for varying external work load. Radial wave stack locations are

given by doubly thick lines.

14.  The optimal nondimensional temperature gradient Tmin as a function of external work that

must be delivered by the stack. Doubly thick lines are for the radial wave cases. The inset graph
shows in more detail that Tmjn is the same for either the plane or radial wave resonators when the

stack has no external work load.

15.  Ratio of radial wave efficiencies to plane wave efficiency as a function of the normalized

external work flow for the plane wave resonator.
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